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ABSTRACT

PUFAs are known to regulate cholesterol synthesis and cellular uptake by multiple mechanisms that do not involve SFAs. Polymorphisms in any
of the numerous proteins involved in cholesterol homeostasis, as a result of genetic variation, could lead to higher or lower serum cholesterol.
PUFAs are susceptible to lipid peroxidation, which can lead to oxidative stress, inflammation, atherosclerosis, cancer, and disorders associated with
inflammation, such as insulin resistance, arthritis, and numerous inflammatory syndromes. Eicosanoids from arachidonic acid are among the most
powerful mediators that initiate an immune response, and a wide range of PUFA metabolites regulate numerous physiological processes. There is a
misconception that dietary SFAs can cause inflammation, although endogenous palmitic acid is converted to ceramides and other cell constituents
involved in an inflammatory response after it is initiated by lipid mediators derived from PUFAs. This article will discuss the many misconceptions
regarding how dietary lipids regulate serum cholesterol, the fact that all-cause death rate is higher in humans with low compared with normal or
moderately elevated serum total cholesterol, the numerous adverse effects of increasing dietary PUFAs or carbohydrate relative to SFAs, as well as
metabolic conversion of PUFAs to SFAs and MUFAs as a protective mechanism. Consequently, dietary saturated fats seem to be less harmful than
the proposed alternatives. Adv Nutr 2021;12:647–656.

Statement of Significance: There is a persistent misperception that dietary saturated fats can cause or promote numerous adverse health
effects and increase serum total cholesterol and LDL cholesterol. This review attempts to clarify how such misperceptions originated and
describes how the dietary alternatives of polyunsaturated oils and processed carbohydrates can be more detrimental to health.

Keywords: atherosclerosis, cholesterol regulation, cancer, dietary recommendations, inflammation, lipid peroxidation, palmitic acid, polyunsatu-
rated fatty acids, saturated fats

Introduction
The notion that dietary saturated fats raise serum cholesterol
originated from the misinterpretation of several studies that
showed if confined individuals consumed diets containing
fats with mostly SFAs and little or no PUFAs, serum
cholesterol was higher compared with when the same
individuals consumed diets containing an abundance of
PUFAs (1–4). When they consumed diets with a high
proportion of MUFAs, serum cholesterol was intermediate.
The fact that the high-MUFA diets contained an interme-
diate amount of PUFAs was generally ignored. One could
conclude from such results that dietary saturated fats raise
serum cholesterol (5), but the interpretation that PUFAs

are responsible for regulating serum cholesterol is generally
overlooked.

The emphasis on promoting a low-fat, low-saturated fat
diet resulted in a large increase in carbohydrate consumption,
and most of that increase was in the form of sugars and highly
refined carbohydrates (6, 7). When dietary saturated fats are
replaced with carbohydrates, there is no change in serum
cholesterol when dietary PUFAs remain unchanged (8), yet
replacing saturated fats with carbohydrates, especially refined
carbohydrates, gives rise to proatherogenic dyslipidemia (9),
as well as low-grade systemic inflammation and insulin re-
sistance, which all increase the risk of cardiovascular disease
(10). Changes in dietary saturated fat intake in adults with

C© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. Adv
Nutr 2021;12:647–656; doi: https://doi.org/10.1093/advances/nmab013. 647

mailto:journals.permissions@oup.com
https://doi.org/10.1093/advances/nmab013


metabolic syndrome resulted in no significant changes in the
proportions of SFAs in any plasma lipid fractions, whereas
replacement of dietary saturated fats with carbohydrates
showed a direct correlation between carbohydrate intake
and proportions of palmitoleate in plasma triglycerides
and cholesteryl esters. Palmitoleate in plasma cholesteryl
esters, plasma phospholipids, and erythrocyte membranes
is a consistent predictor of type 2 diabetes and metabolic
syndrome (11).

Overall mortality, and not just coronary deaths, should be
the primary concern when considering dietary recommen-
dations for the general public. Several studies from diverse
populations have shown that the all-cause death rate is
greater for low serum total cholesterol (<180 mg/dL) than
for intermediate to moderately high serum cholesterol (180–
240 mg/dL) (12–16), particularly in elderly populations (17).
It is important to note that even the 2 Finnish cohorts of
the Seven Countries Study, which had the highest median
serum total cholesterol for all cohorts at >250 mg/dL, had
more overall deaths in a subgroup of the lowest 30% of
serum cholesterol than there were in the highest 30% of
serum cholesterol; the latter subgroup would have had serum
total cholesterol well above 250 mg/dL in those 2 cohorts
(18). This was true for other cohorts in the Seven Countries
Study. So the question of lowering serum cholesterol to
increase longevity should be weighed on a case-by-case
basis, rather than a blanket recommendation for the general
population.

Numerous reports and meta-analyses support the idea
that dietary saturated fats have no influence on the incidence
of cardiovascular disease, coronary heart disease, type 2
diabetes, or death from all causes (9, 19–22). However,
many diet and health authorities continue to stress studies
that showed a decrease in serum cholesterol in response to
replacing dietary SFAs with PUFAs, and conflate that to mean
that dietary saturated fats increase risk of cardiovascular
disease and death from coronary heart disease (23). The flaws
in the studies used to support the “diet-heart” hypothesis
have been documented for years, yet dietary guidelines from
many sources continue to push for lower dietary intake
of all saturated fats with no substantial scientific support
for that policy (22, 24, 25). The fact that overall death
rate is not associated with serum cholesterol concentrations,
except in the extreme upper concentrations or extreme lower
concentrations of serum cholesterol, should render dietary
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recommendations for the purpose of lowering serum choles-
terol in the general population unwarranted. A summary of
the potential consequences of replacing dietary saturated fats
with refined carbohydrates or polyunsaturated oils is shown
in Figure 1.

PUFA Oxidation and Lipid Peroxidation
PUFAs are important for production of a wide range of
bioactive substances in the body, but like some vitamins
and essential minerals, may become toxic when consumed
in excess. PUFAs can be oxidized in a spontaneous chem-
ical oxidation process that does not require enzymes and
would not be regulated in cells by normal processes. This
spontaneous oxidation is initiated by free radicals, reactive
oxygen species (ROS), and reactive nitrogen species (RNS),
which are constantly being formed in biological systems
(26, 27). This free radical oxidation process, which is
known as lipid peroxidation, requires molecular oxygen,
and produces fatty acid peroxides, reactive carbonyl species
such as malondialdehyde, as well as numerous other toxic
products. The wide array of ROS, RNS, and toxic organic
products formed during lipid peroxidation of PUFAs can
cause mutations in DNA, which can lead to cancer (28). Lipid
peroxidation can damage cell membranes and lead to cell
death. The wide array of ROS and lipid peroxidation products
are implicated in oxidative stress, aging, and many diseases
(29, 30).

The body has many protective systems to combat lipid
peroxidation, including lipid-soluble antioxidants, such as
vitamin E, enzymes that eliminate ROS and RNS, and
enzymes that metabolize the lipid peroxides to detoxify them
(31). Lipid peroxidation of PUFAs in lipoproteins, such as
LDLs, results in the oxidized LDLs being removed from the
circulation by macrophages lining the arteries, leading to
atherosclerosis (32, 33). Although consuming more PUFA-
rich vegetable oils can lower serum total cholesterol and
LDL cholesterol, it is the PUFAs in LDLs that are suscep-
tible to lipid peroxidation, which destines that lipoprotein
and its cholesterol load to the atherosclerotic deposits
surrounding the arteries (34). There is also evidence that
dietary oxidized PUFAs and oxidized cholesterol can lead to
increased atherosclerosis (35). This leads to a conundrum:
Consuming PUFAs to lower serum LDL cholesterol can also
increase the chances for lipid peroxidation and consequent
atherosclerosis. MUFAs are much less susceptible to lipid
peroxidation, and SFAs are completely resistant because they
do not contain the reactive carbon-carbon double bonds.

The point of this discussion is to stress the fact that PUFAs
are not only found in vegetable oils, but also are present at
low to moderate concentration in most animal fats as well.
Regardless of the source, PUFAs are highly susceptible to
lipid peroxidation, which can lead to atherosclerosis, heart
disease, cancer, inflammation, and other unhealthy processes
(30, 36). Mammals preferentially oxidize PUFAs via the β-
oxidation pathway in mitochondria for ATP production,
or in peroxisomes to recycle excess PUFAs into SFAs and
MUFAs to eliminate a portion of these reactive nutrients
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Figure 1 Some potential consequences of replacing dietary saturated fats with refined carbohydrates or polyunsaturated oils. These
various physiological and health effects are described in the text. PPAR, peroxisome proliferator-activated receptor; ROS, reactive oxygen
species; SREBP, sterol regulatory element-binding protein.

and prevent formation of potential toxins, particularly in
the fetus and infant (see below) (37, 38). There could
be many evolutionary reasons for converting PUFAs into
SFAs, cholesterol, and ketones (39). Peroxidation of PUFAs
in meats cooked at high temperature (40) or stored in
the presence of oxygen (41) could be the reason for any
association of meats with adverse health effects, whereas the
saturated fat content of that food is less likely to be involved in
the mechanisms for disease (42). There are often conflicting
data regarding adverse health effects of foods that contain
predominantly SFAs, and it is best to use a more holistic
approach to dietary recommendations and food choices (22).
In addition, some animal fats that are classified as saturated
fats contain significant amounts of PUFAs, such as lard,
which contains ∼10% linoleic acid (LA), similar to palm oil
and olive oil.

Fatty Acids and Serum Lipids
The primary factor that determines whether a person has
low, normal, or high concentrations of serum cholesterol is
genetic (43, 44). The effect of dietary fats on any individ-
ual’s serum cholesterol is superimposed on the genetically
determined concentration of serum cholesterol (45, 46).
Numerous studies have indicated many inconsistencies in
dietary responses in relation to specific gene polymorphisms
(47), but the complexity of genetic variations and the broad
range of gene products involved make this area of exploration
rife with unpredictability and controversy. Genetic polymor-
phisms have been studied for several specific apolipoproteins,
lipoprotein receptors, fatty acid–binding proteins, lipopro-
tein lipase, and other proteins involved in lipid transport (48).

It is clear that focusing on apolipoproteins and their receptors
is only a small aspect of the serum cholesterol picture.

The biochemical processes that determine serum choles-
terol concentrations are the rate of cholesterol synthesis,
especially in liver, and metabolic consumption to form
numerous steroid products in the body. The expression
of genes that code for enzymes that synthesize cholesterol
and other lipids is regulated by a group of transcription
factors known as sterol regulatory element-binding proteins
(SREBPs) (49). When cholesterol concentrations are low in
a cell, a series of events take place to increase the nuclear
presence of SREBPs (SREBP1a and SREBP2) to promote
the expression of genes for cholesterol synthesis, as well as
its uptake from circulating lipoproteins (50). Insulin can
also induce an increase in nuclear SREBP1 (both SREBP1a
and SREBP1c), which will result in expression of genes for
synthesis of fatty acids, cholesterol, and other lipids when
carbohydrates are consumed in excess and stored as fat.
When cholesterol concentrations are high in the cell, events
occur to decrease the presence of SREBPs in the nucleus,
which diminishes cholesterol synthesis and uptake from the
circulation. The presence of PUFAs can decrease the amount
of nuclear SREBP1 to decrease the synthesis of fatty acids,
cholesterol, and other lipids, with long-chain ω-3 PUFAs
showing the strongest activity in this capacity (51). SFAs
and MUFAs do not have any influence on these control
mechanisms.

Another class of fatty acid–activated transcription factors
that promote gene expression are peroxisome proliferator-
activated receptors (PPARs). Three different PPARs have
been identified: PPARα, PPARβ/δ, and PPARγ . These
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nuclear receptors are structurally similar, but have distinct
ligand-binding properties, functions, and tissue distributions
(52). All PPARs bind fatty acids, with a strong preference for
long-chain PUFAs and relatively little activity with SFAs and
MUFAs. PPARα is present in many tissues that rely heavily
on oxidative metabolism, such as brown adipose tissue, heart
muscle, skeletal muscle, and liver (53). Selectively activating
PPARα with a specific agonist (WY-14,643) increased liver
mass relative to body weight in rats, and decreased serum to-
tal cholesterol, HDL cholesterol, and triglycerides compared
with control animals fed the same standard chow diet (54).
In addition, β-oxidation occurred at a higher rate in liver,
although liver contents of SFAs and MUFAs were higher,
whereas PUFA content was lower, indicating a preferential
oxidation of PUFAs in peroxisomes with subsequent de novo
lipogenesis in PPARα agonist–treated rats compared with
controls.

Treatment of rats with a selective agonist for PPARγ

(rosiglitazone) had relatively little effect on liver but a
significant effect on lipid metabolism in adipose tissue,
resulting in lower serum triglycerides and no significant
changes in serum cholesterol compared with control rats
(54). In view of the fact that PPARs exhibit a strong response
with PUFAs and little or no response to MUFAs and SFAs,
it has become clear that PUFAs, particularly DHA and
other longer-chain PUFAs, can lower serum cholesterol via
PPARα. In addition, PUFA activation of PPARγ can elicit the
beneficial reduction of serum triglycerides, increase adipose
tissue storage of lipids, and decrease release of free fatty
acids from adipose tissue. This latter mechanism explains
the beneficial effects of longer-chain ω-3 PUFAs on insulin
sensitivity and glucose metabolism.

Consequently when PUFAs are abundant as a result of
increased dietary intake, the liver enzymes for β-oxidation
of excess PUFAs in peroxisomes will help to limit the
amount of PUFAs in the body to prevent excessive lipid
peroxidation. In addition, many PUFA metabolites, such as
eicosanoids, endocannabinoids, and the oxidized derivatives
9- and 13-hydroxyoctadecadienoic acids, will also activate
PPARα in the nucleus (53). These metabolites and oxidation
products of PUFAs would be an indicator of sufficient PUFAs
present in body tissues to satisfy their need for synthesis
of bioactive signaling agents and the excess should be
eliminated. The main point of this discussion is that PUFAs,
rather than SFAs or MUFAs, are responsible for regulating
cholesterol metabolism, and consequently serum cholesterol
and lipoprotein concentrations. The key factor is the level
of PUFAs in the diet, which can influence the mechanisms
for cholesterol synthesis, uptake, and distribution. Changes
in the amount of SFAs or MUFAs consumed in the diet will
have little or no influence on these mechanisms.

Some studies that compared olive oil (SFA:MUFA:PUFA
ratio ∼15:75:10) with palm oil (SFA:MUFA:PUFA
∼50:40:10) found no difference in serum cholesterol
concentrations of young, healthy human volunteers. Palm
oil diets had much more SFAs than olive oil diets; however,
because the diets contained the same amount of PUFAs,

serum cholesterol did not change with these changes in
dietary SFA (55, 56). It is estimated that ≤6–8 g/d PUFAs
(8–10% of total fatty acids; 2–3% of energy) in the diet would
be sufficient to satisfy normal requirements for production of
bioactive products without causing adverse health effects. In
addition, a ratio of ω-6/ω-3 PUFAs near 1 or 2, but certainly
<5 would be optimum for good health (57, 58).

Importance of Palmitic Acid in Development
and Physiology
Palmitic acid (PA) is the major SFA in the human diet and in
the human body. The importance of PA in the development
of the human fetus and infant was reviewed by the late
Sheila Innis (59), who devoted much of her research to the
nutrients in mammalian milk. The human baby is one of
the fattest of all mammals at normal gestational birth; the
adipose fat is 45–50% palmitic acid, and the baby continues
to add fat during the early months of life under normal
circumstances. A human baby will have ∼2% PUFAs in
adipose tissue at birth. Innis raised concerns that infants fed
formulas with lipids coming from vegetable oils accumulated
≤26% LA in adipose tissue, mostly replacing palmitic acid
(60), whereas LA increased to 6–8% in breast-fed infants after
7 mo (61). Mammary glands produce predominantly SFAs,
regardless of the mother’s dietary fat intake, and Innis raised
the question of the importance of milk fatty acid composition
with respect to developmental biology, and pointed out the
broader implication for proper nutritional care for infants
and children (59).

The unique composition of triglycerides in mammalian
milk (human as well as ruminant milk) compared with
vegetable oils provides clues regarding the importance of
PA to infant development. Palmitate in the sn-2 position of
glycerol of milk triglycerides improves absorption from the
intestinal tract (62). The structure as well as composition of
milk triglycerides ensures that newborn infants absorb an
abundance of PA in the early stages of development, which
is most likely evolutionarily advantageous. When infants
were fed formula consisting of vegetable triglycerides, the
proportion of LA increased dramatically to ≤46% of fatty
acids in adipose tissue by 10 mo of age (63). Although
increasing PUFA intake in infants can marginally lower
serum cholesterol at 1 y of age (64), such manipulations in the
PUFA content of infant formula and diets could have longer-
term consequences that do not seem to have been followed
in those cohorts.

PA is a major fatty acid in brain phospholipids, consti-
tuting 45–55% in phosphatidylcholine fractions (65). PA is
used by cells to form sphingolipids, which with cholesterol
and palmitoylated proteins, are important components of
lipid rafts that facilitate endocytosis in caveolae, as well as
numerous cell signaling pathways (66). PA is the major fatty
acid in lung surfactant, and palmitoylethanolamide is a lipid
mediator of intra- and intercellular signals in many cells and
tissues (67).

Perhaps the greatest tragedy regarding dietary recommen-
dations is for parents to give their children low-fat or skim
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milk rather than full-fat milk. A recent review indicated that
there is no evidence that full-fat milk consumption leads to
obesity or cardiometabolic risk in children and adolescents
(68). A recent study found that higher milk fat consumption
in 3-y-old Latino children was associated with significantly
lower odds for severe obesity in that population (69).
Another study found significantly less adiposity at age 13
for children in the highest quartile of dairy fat consumption
compared with the lowest quartile (70). Milk consumption by
children and adolescents decreased by 38% between 1977 and
1996, whereas sweetened beverage consumption increased
by 215% and consumption of fruit drinks increased by
189% (71). It seems the dietary recommendation to decrease
milk fat consumption has caused parents to allow or even
encourage children to consume more sweetened beverages
under the false impression that they might be healthier for
their children.

Fatty Acids and Inflammation
Inflammation can arise from an acute immune response to
insult or injury, causing pain and discomfort, but generally
subsides when the pathogenic insult is brought under control
and injured tissue is repaired. A more subtle form of
inflammation, known as low-grade systemic inflammation,
occurs when immune cells infiltrate adipose tissue, especially
visceral adipose tissue in obese individuals (72). Chronic
systemic inflammation can lead to insulin resistance, type 2
diabetes, metabolic syndrome, atherosclerosis, and a variety
of other metabolic disruptions and unhealthy conditions.

Inflammatory responses are initiated by a wide range of
lipid mediators, including many eicosanoids formed from
arachidonic acid (AA), the major ω-6 long-chain PUFA in
membrane phospholipids of immune cells (73). The proin-
flammatory eicosanoids include: 5-hydroxyeicosatetraenoic
acid, PGE2, and leukotriene B4 (LTB4), among others. A
similar array of proinflammatory eicosanoids are formed
from EPA, but these are generally considered to be less
provoking than the ω-6 derivatives from AA with regard
to an immune response (74). Proresolving eicosanoids are
formed from these two 20-carbon PUFAs, such as lipoxin
A4 and resolvin E1, among others, which actively participate
in abatement of the inflammatory response. There are
additional proresolving lipid mediators formed from DHA,
which include resolvin D1, protectin D1, and maresin,
among others (75).

The roles of PUFA-derived lipid mediators in an inflam-
matory response have been reviewed (73, 76, 77). Non-
steroidal anti-inflammatory drugs (NSAIDs) are effective
at suppressing an acute inflammatory response because
they inhibit cyclooxygenase enzymes that produce the
precursors for many of the bioactive eicosanoids in the
PG and thromboxane branch of eicosanoids. Steroidal anti-
inflammatory drugs can be even more effective by sup-
pressing inflammation that is resistant to NSAID treatment
because they inhibit the release of long-chain PUFAs from
cell membranes and diminish production of all eicosanoids,
including the lipoxygenase products and the LT branch

of proinflammatory agents. The eicosanoids are upstream
lipid mediators, which initiate a cascade of events to release
cytokines and other factors in an immune response. Peptide
cytokines are generally measured as markers of inflammation
because they have much longer half-lives than the lipid
mediators. The point here is that it takes very little AA to
trigger an immune response via its conversion to bioactive
eicosanoids.

Dietary LA shows a nonlinear correlation with liver AA
in rats fed fat-free background diets (78). A study in humans
consuming high or low levels of LA showed a positive linear
correlation with LA, but no significant changes in AA in
neutrophils and plasma lipids. In that study, supplementation
with fish oil (1.6 g/d EPA, 0.3 g/d DHA) resulted in reduced
AA in neutrophil phospholipids (79). A review of 36 articles
that studied changes in dietary LA intake and changes in
tissue AA (erythrocytes and plasma/serum phospholipids)
concluded that large variations in LA consumption have
no significant effect on AA concentrations in those tissues
(80). A recent review concluded that AA consumption can
increase AA in membrane phospholipids of peripheral blood
mononuclear cells (lymphocytes and monocytes) that are
involved in inflammation, whereas changes in LA consump-
tion showed no significant effect on AA in those cells (81).
One would conclude from the above information that cells,
particularly immune cells, regulate the synthesis of AA from
LA and maintain a relatively constant concentration of AA
in membrane phospholipids when humans consume a diet
with ≥2% of energy from LA. Typical LA consumption by
humans consuming a Western diet is closer to 6% of energy
(82). However, EPA and DHA can reduce the concentration
of AA in membrane phospholipids when they are consumed
in the diet.

Fish oil supplements and ω-3 PUFAs have received
the most attention with regard to dietary fats influencing
arthritis symptoms, such as morning stiffness, pain, grip
strength, swollen or tender joints, and reduction in the use of
NSAIDs (83). One meta-analysis found significant reduction
in patient-reported symptoms and use of NSAIDs with
ω-3 fish oil consumption, whereas physician assessments
showed no statistically significant clinical improvements
(84). Study designs often have limitations, such as short
duration, inappropriate placebo or control, low dose for ω-
3 fish oil supplements, and not recommending a reduction in
the use of ω-6 PUFA intake. Another meta-analysis of 10 ran-
domized controlled trials found that supplementation with
>2.7 g ω-3 long-chain PUFA per day for ≥3 mo duration
consistently and significantly reduced NSAID consumption
(85). Clinical evaluation of arthritic symptoms showed a
trend toward improvement but again were not statistically
significant relative to placebo controls.

There have been several recent reviews and meta-
analyses regarding dietary ω-3 PUFA supplements or fish
consumption effects on arthritic inflammation (86–88). The
general consensus seems to be that ω-3 PUFA supplements
can result in a decrease in the quantity of NSAIDs taken
to relieve pain and inflammation, but there is no overall
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significant effect with regard to several clinical markers of
inflammation. Because some eicosanoids from EPA can be
proinflammatory, albeit less so than those from AA, the
differences in the degree of inflammation can be subtle.
EPA can suppress the production of AA metabolites by
competing with AA for incorporation into cell membranes
and is considered a poorer substrate for cyclooxygenase
and PG production. EPA is a relatively good substrate for
lipoxygenase and LT production, although LTB5 from EPA
exhibited much less activity than LTB4 from AA with regard
to activation of leukocytes (89). Another drawback of many
studies in humans is that participants might not be advised
to decrease their consumption of ω-6 PUFA-rich vegetable
oils while taking ω-3 PUFA supplements, and consequently
continue to have a relatively large ω-6/ω-3 PUFA ratio in
their overall diet.

A few studies of arthritic models in rats compared dietary
saturated fats with polyunsaturated oils or supplementation
with oils after arthritis was induced. When a diet containing
corn oil (high in LA) was compared with beef tallow (low
in essential fatty acids, EFAs), and a fish oil diet (high in ω-
3 PUFAs), the corn oil diet strongly exacerbated adjuvant-
induced arthritis in rats, whereas the beef tallow diet resulted
in relatively little inflammation, and rats fed the fish oil diet
showed an intermediate level of inflammation (90). When
rats were fed an EFA-deficient diet, they showed much less
adjuvant-induced inflammation compared with animals fed
a control diet, but the inflammatory response was restored
when rats fed the EFA-deficient diet were given a corn oil
supplement after adjuvant treatment (91). Rats fed an EFA-
deficient diet starting with the day of adjuvant treatment
had 87% less edema in the hind foot pads compared with
control rats, and edema increased when the animals on the
EFA-deficient diets were given a dose of 273 mg/d LA after
adjuvant treatment (92). Another study found that dietary
fish oil increased inflammation relative to beef tallow for
collagen-induced arthritis in rats, indicating that the ω-
3 PUFAs in fish oil are proinflammatory relative to SFAs
(93). These studies indicate that minimizing dietary PUFAs
was beneficial in reducing arthritic inflammation in animal
models. The fact that ω-3 EPA produces eicosanoids that
generally have similar, albeit less potent, actions relative to
ω-6 eicosanoids from AA, would explain the in vivo results
of these animal studies. It is interesting that dietary DHA,
but not a combination of DHA with EPA, reduced collagen-
induced inflammation in rats (94), whereas oral administra-
tion of monoacylglycerol derivatives of EPA decreased the
severity of adjuvant-induced arthritis in rats more than the
monoacylglycerol DHA derivative (95).

There has been much discussion in the literature of the
role of SFAs, particularly PA, in inflammation. There seems
to be widespread misunderstanding of how PA is involved in
an immune response, which stems from a study that found
high concentrations (200 μM) of SFAs, but not MUFAs or
PUFAs, could increase the release of inflammatory cytokines
when the fatty acids were added to mouse macrophages in
cell culture. PA has low solubility in water (0.2 μM), so fatty

acid–free BSA was used to suspend the high concentration
of fatty acids in the cell culture medium (96). The response
to added PA in the cell culture medium was dependent on
Toll-like receptor 4 (TLR4) activation in the macrophages.
The authors tested the fatty acid–free BSA for LPS and found
it to be present but negligible. Another study found that
100 μM PA added to culture media with 2% fatty acid–
free BSA did not give a significant change in inflammatory
cytokines, although 200 μM PA did give a significant increase
(97). This level of BSA is several fold higher than albumin
found in human blood, as is the concentration of PA needed
to produce a significant increase in inflammatory cytokines.
A later study showed that commercial fatty acid–free BSA
is contaminated with lipopeptide, which activates another
inflammatory TLR, TLR2 (98). Murumalla et al. (99) found
that SFAs do not activate TLR2 or TLR4.

The mechanism by which TLR4 becomes activated is
complex and involves dimerization of a TLR4-MD2 complex
through linkage with LPS and further interaction with
other membrane proteins, including myeloid differentiation
factor 88 (MyD88) and CD14, to stimulate inflammatory
cytokine production (100). It is unlikely that free SFAs would
accomplish the same molecular interactions to activate TLR4.
Membrane microdomains known as lipid rafts are involved
in this process, and it has been suggested that PA augments
an activated TLR4 response because it is a precursor for
ceramides that constitute lipid rafts (101, 102). Ceramides are
also necessary for TLR4-induced insulin resistance, which is
often a consequence of low-grade inflammation arising from
obesity in mice (103). It must be emphasized that the PA
for ceramide synthesis is endogenous and dietary intake will
have little or no influence.

Fetuin-A is a glycoprotein secreted predominantly by liver
that carries free fatty acids in the blood and has been shown to
activate TLR4 (104). Serum fetuin-A is high in obese diabetic
humans, as well as in high-fat-diet–induced insulin-resistant
mice and genetically obese (ob/ob) mice. Fetuin-A and TLR4
are both necessary to produce high-fat-diet–induced insulin
resistance in mice (104). Fetuin-A was known from the
mid-20th century to be an abundant protein in fetal calf
serum (105). Fetal calf serum was used in the cell culture
studies described above that showed SFAs augment TLR4-
dependent increases in inflammatory cytokine production
by macrophages. It is likely that fetuin-A rather than LPS
was mediating TLR4 activation when SFAs were added to
the culture medium in the studies described above. Little is
currently known about the mechanisms that influence levels
of fetuin-A in the body (106).

Dietary Fats and Cancer
Early studies found that high-fat diets in laboratory animals
could increase the incidence of spontaneous and chemically
induced cancers (107). It was later found that chemically
induced mammary tumors in rats were augmented by dietary
polyunsaturated vegetable oil compared with saturated fats in
coconut oil (108). However, an epidemiological study of the
incidence and rate of mortality from breast cancer in various
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countries correlated with total dietary fat, rather than with
any particular type of fat, that is, saturated compared with
polyunsaturated (109). A recent review has described how
high-fat diets can increase cancer incidence in laboratory
animals, with low-grade systemic inflammation arising from
the high-fat diets suggested as a contributing factor (110).
The role of eicosanoids in carcinogenesis, cell proliferation,
cell migration, and angiogenesis has been reviewed (111).
It is generally believed that ω-3 PUFAs from fish oils can
suppress the effects of ω-6 PUFA derivatives by displacing AA
in cell membranes and competing with AA for metabolism to
eicosanoids, in addition to the ω-3 eicosanoids often having
less potent actions compared with their ω-6 counterparts.
It is estimated that 20% of cancer deaths could be due
to inflammation and chronic infections. There is strong
evidence to support the use of anti-inflammatory drugs, both
cyclooxygenase and lipoxygenase inhibitors, as anticancer
drugs (112).

Lipid peroxides, ROS, and oxidative stress are associated
with inflammation and are frequently invoked in tumor
promotion by causing a switch in cellular metabolism (113).
One of the major switches in metabolism in cancer cells is
toward glycolysis as the major pathway for ATP production.
This makes tumor cells more reliant on carbohydrate as
an energy source. Conditions that increase carbohydrate
availability, such as insulin resistance and diabetes, can
promote tumor growth (114). Animal studies have shown
that caloric restriction, ketogenic diets, and fasting can
diminish cancer progression and metastasis (115). Although
there is much interest in the use of ketogenic diets for cancer
therapy in humans, the clinical evidence regarding ketogenic
diets and tumor formation and progression is lacking (116).
One problem might be the level of ω-6 PUFAs consumed
in a ketogenic diet, which could have an adverse effect in
terms of cancer therapy. The complexity of human dietary
evaluation and manipulation in a free-living population
makes it difficult to draw conclusions regarding dietary
constituents and diseases.

Studies attempting to elucidate the role of dietary fats,
whether total fats, saturated fats, or polyunsaturated oils, have
been inconsistent with regard to cancer. It appears that a high
caloric intake can promote cancer and cell proliferation, but
evidence that cancer cells shift metabolism toward glycolysis
for energy production, indicates that dietary carbohydrates
would have a greater influence than dietary saturated fats
on tumor promotion. Sugar, or more specifically fructose,
is known to cause increased serum triglycerides, insulin
resistance, and hyperglycemia (117), all of which would
promote cancer.

Conclusions
Whether dietary saturated fat raises serum cholesterol or
whether dietary PUFAs lower serum cholesterol might
appear to be a moot point to some individuals. It is important
to recognize that the focus on decreasing dietary fats resulted
in a large increase in carbohydrate consumption, which
has had undesirable health consequences as illustrated by

the dramatic rise in obesity, type 2 diabetes, metabolic
syndrome, and associated diseases. In addition, replacing
saturated fats with unsaturated oils could have exacerbated
diseases associated with lipid peroxidation and oxidative
stress. It should not be surprising that numerous studies have
tried to decipher the effects of specific dietary components
on a broad range of risk factors and health effects only
to obtain inconsistent results. When studying a free-living
population it is impossible to separate the effects of any given
dietary component from the myriad of other constituents
of the diet, their respective impacts on some physiological
phenomenon, and the gene–dietary constituent interactions.
Because the genetic makeup of each individual is different,
each can respond to any given dietary alteration in a
somewhat different way (118). It can also be misleading to
study manipulations of a particular line of cells in culture
to understand how those cells will respond to a similar
manipulation in an intact organism.

The various ways in which PUFAs, especially the ω-6
PUFAs found in vegetable oils, can augment inflammation
and exacerbate a wide range of diseases associated with
inflammation have been discussed here. The data are quite
consistent in most animal studies, although often less
convincing when dealing with humans. A major drawback in
human studies is that humans generally consume relatively
large amounts of ω-6 PUFAs, so any intervention that
attempts to alter the amounts of PUFAs in the diet can make
very little difference in the amounts of ω-6 PUFAs stored
in adipose tissue or in membrane lipids. There has been
some success in this respect when ω-3 PUFAs are substituted
for ω-6 PUFAs in the diet. This requires more than merely
supplementing the diet with ω-3 PUFAs, because dietary
levels of ω-6 PUFAs are generally quite high and modest
amounts of ω-3 PUFAs added to that will not be sufficient
to displace the ω-6 PUFAs that are already in the body
and continue to be added in the diet. Generally, it would
require decreasing ω-6 vegetable oils to very low levels when
supplementing with ω-3 PUFAs to see a significant effect. In
addition, it is likely to take more than a month or two on a
low ω-6 PUFA diet to deplete the substantial stores of LA that
can be in adipose tissue as a result of a lifetime of consuming
a Western diet.

Lipid peroxidation can cause oxidative stress and vice
versa, and the role of these phenomena in several diseases
is well documented (28, 30, 119). It is inappropriate to assign
adverse effects to “dietary” saturated fats, because SFAs are
chemically stable, synthesized from other nutrients in the
body (notably carbohydrates and PUFAs), and are generally
maintained within certain limits in most tissues according
to physiological control mechanisms. On the other hand,
PUFAs are unstable to chemical oxidation and their oxidation
products are harmful in a variety of ways. PUFAs also form
powerful signaling agents that can initiate inflammation,
which can have dire health consequences, as described above.
Many of the oxidized metabolites of PUFAs, especially ω-
3 PUFAs, can also resolve inflammation. If saturated fats
are replaced by carbohydrates in the diet, there would be
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no significant improvement in serum cholesterol, and it
can result in a more atherogenic lipoprotein profile. When
looking at much of the data in the context of known
biochemical and physiological mechanisms, it appears that
saturated fats are less harmful than the common alternatives.
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